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Abstract. Promise problems have been introduced in 1985 by S.Even
e.a. as a generalization of decision problems. Using a very general ap-
proach we study solvability and unsolvability conditions for promise
problems of set families and languages. We show, that cores of un-
solvability are completely determined by partitions of cohesive sets.
We prove the existence of cores in unsolvable promise problems as-
suming certain closure properties for the given set family. Connections
to immune sets and complexity cores are presented. Furthermore, re-
sults about cohesiveness with respect to the language families from the
Chomsky hierarchy are given.
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Introduction

In 1985 S.Even, A.L.Selman and Y.Yacobi [4] introduced the concept of promise
problems as a generalization of decision problems. A promise problem consists of a
pair of disjoint sets A and B with A,B ⊆ S and a given set family F ⊆ 2S , where
S is some basic (usually infinite) set. (A,B) is solvable for F if a Q ⊆ S exists with
Q ∈ F and Qc ∈ F and A ⊆ Q and B ⊆ Qc, where Qc is the complement of Q in S.
In the case B = Ac (A,B) is a decision problem. In applications S = X∗, where X
is a finite nonempty alphabet and F = L is language family or a complexity class
F = C. From an algorithmic point of view considering a promise problem (A,B) an
algorithm may only produce a Yes-answer for all instances x ∈ A and a No-answer
for all x ∈ B, while no decisive answer is expected for x /∈ A ∪ B. Solvability of
promise problems can be linked to the existence of approximation or ”special case”
algorithms (see [2]). Thus with respect to complexity of algorithms a more refined
look than for decision problems is possible. Promise problems have been considered
for various fields of algorithmic computations. Especially, some decision problems
which are difficult to solve allow efficient algorithm once they are weakened to a
promise problem. The reader can find an overview in [5]. Looking at the theory
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of recursive functions [8], the separation principle is a precursor of the concept of
promise problems. Furthermore, we can use the notion of cohesive sets, also known
in the theory of recursive function, by an appropriate generalization. This turns
out to be the characterizing indicator for (un-)solvability of promise problems. It
was well-known, that only set-theoretic arguments can be used in dealing with
these concepts. We mention especially the theorem of Dekker-Myhill [8] which
asserts the existence of cohesive sets under very weak conditions. Our main results
are a theorem about the existence of unsolvability cores for an unsolvable promise
problem (A,B) and the characterization of unsolvability cores via cohesiveness
of A ∪ B. The latter enables us, to study the influence of closure operations on
the unsolvability of promise problems. Though the existence of cohesive sets is
guaranteed under very mild conditions, it is quite difficult, to exhibit cohesive
languages with nice properties. We determine cohesive sets and noncohesive sets
for language families from the Chomsky hierarchy and for families given by number
theoretic properties. Especially, we prove a structure result for alphabets X with
two or more letters. For some special cases we can at least assert the existence of
recursive cohesive languages. Using results from [2], the connection to complexity
cores gives a similar result for recursive language families and complexity classes.
We assume the reader to be familiar with the theory of recursive functions and
sets (see [2], [8], [9]) and standard theory of formal languages (see [6], [7]).

Our study of promise-problems was proposed to us by M. Ziegler who raised
the question answered in theorem 5.13.

1. Set- and Language Families - Basic Notations and
Results

In the following a basic set S is given and we assume for set families F ⊆ 2S .
Moreover, sets A,A′, B,B′, C, · · · , Q, · · · are always subsets of S and singletons
{s} are identified with s. We mainly deal with denumerable set families F ; i.e. a
function eF : N0 → 2S with eF (N0) = F exists (enumeration of F). Consider the
boolean operations union, intersection and complementation in connection with
set families F . The boolean operations can be lifted to binary operations between
set families F1 and F2 and unary operations for F . Define F1⊕F2 = {A∪B|A ∈
F1 and B ∈ F2},F1�F2 = {A∩B|A ∈ F1 and B ∈ F2} and the closure operations

Fu = {A1 ∪ . . . ∪An|n ≥ 1, Ai ∈ F for 1 ≤ i ≤ n}(union),

Fs = {A1 ∩ . . . ∩An|n ≥ 1, Ai ∈ F for 1 ≤ i ≤ n}(intersection),

Fco = {Ac|A ∈ F}, Fcc = F ∪ Fco, (complementation) and

Fb = ((Fcc)s)u(boolean closure).

Moreover, we will frequently use Fdc = F ∩ Fco.
Note, that (Fu)s = (Fs)u(distributivity), (Fco)u = (Fs)co(deMorgan), (Fcc)dc =

Fcc and (Fco)co = F . There are numerous (mostly trivial) relations between these
operations, for example.
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Proposition 1.1. Let F1,F2 ⊆ 2S.

(1) F1 ⊕F2 ⊆ F1 ⇒ F1 ⊕Fu
2 ⊆ F1 and Fu

1 ⊕F2 ⊆ Fu
1 .

(2) F1 �Fco
2 ⊆ F1 ⇒ F1 � (Fco

2 )u ⊆ Fu
1 and Fu

1 �Fco
2 ⊆ Fu

1 .

In the following we frequently use the combined operation of variation of F by
V defined by F ± V = F ⊕ V ∪ F � Vco.

Proposition 1.2. Let F ,V ⊆ 2S with V 6= Ø and F ± V ⊆ F .

(1) Ø, S ∈ F ⇔ Vcc ⊆ F .
(2) Fcc ± V ⊆ Fcc,Fu ± V ⊆ Fu,Fs ± V ⊆ Fs and Fb ± V ⊆ Fb.
(3) F ± Vu ⊆ F

In the case V = fin(S) = {A ⊆ S|A finite}, the condition F ± fin(S) ⊆ F
is just the closure under finite variation. Note that, fin(S)cc = (fin(S)cc)b and
F � fin(S) ⊆ fin(S). By prop.1.2.(2) Fcc,Fu,Fs,Fb are closed under finite
variation, if F is closed under finite variation.

Consider the case S = X∗, where X is a nonempty, finite alphabet and X∗ is the
free monoid over X. As usual L ⊆ X∗ is called a language and L ⊆ 2X

∗
a language

family. The elements of X∗ are the words w = x1 . . . xn(xi ∈ Xfor 1 ≤ i ≤ n) and
the empty word 1. The length of w is |w| = n and |1| = 0. Concatenation ”wv” of

words is the monoid operation with identity 1. The operation can be lifted to 2X
∗
.

For L1,2 the complex product is defined by L1L2 = {w1w2|w1 ∈ L1, w2 ∈ L2}. L∗
is the generated submonoid.

On X∗ we can define various (partial) orderings. The following two ones are
of interest to us. Define for v, w ∈ X∗ the prefix-ordering by w ≤ v(pref) ⇔
v ∈ wX∗. Given a bijection ord : X → [0 . . . b − 1](b = #(X)) we can define
also a well-ordering lexord by w ≤ v(lexord ) if and only if |w| < |v| or ∀u ∈
X∗, x, y ∈ X : ux ≤ w(pref) and uy ≤ v(pref) ⇒ ord(x) ≤ ord(y). Since
lexord is a well-ordering, we can define a successor function succord for w ∈ X∗
by succord (w) = min{v ∈ X∗|w 6= v and w ≤ v(lexord )}, where the minimum
is taken with respect to lexord . Then char∗(i) = succiord (1)(i ≥ 0)defines a
bijection char∗ : N0 → X∗ .

The language families from the Chomsky hierarchy are Lr.e.(X) (recursively
enumerable languages), Lcs(X) (contextsensitive languages), Lcf(X) (contextfree
languages) and Lreg(X) (regular languages). All these families are closed un-
der variation by Lreg(X). By encoding the generating grammars we find spe-
cial enumerations er.e., ecs, ecf and ereg of the corresponding language family.
With these enumerations we can study decision problems and constructions for
the descriptional devices (grammars). Look for example at the word-problem for
Lcs(X). Using 0, 1 ∈ N0 as truth values, define the predicate wordcs(i, j) =
“char∗(i) ∈ ecs(j)” (i, j ≥ 0). Then wordcs ∈ rec2, where recn(n ≥ 0) is
the set of n-ary recursive functions. In the case of complexity classes C we can
find enumerations eC , such that wordC(i, j) =“char∗(i) ∈ eC(j)” (i, j ≥ 0) is
recursive. Here we have to use as descriptional devices Turingmachines with rea-
sonable resource bounds (time-/space-constructibility (see [2])). More general, let
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worde(i, j) =“char∗(i) ∈ e(j)” (i, j ≥ 0) for any e : N0 → 2X
∗
. We call e WP-

recursive if and only if worde ∈ rec2. A language family L is WP-recursive, if a
WP-recursive enumeration e of L exists. In this case L ⊂ Lrec(X) = Lr.e.(X)dc

(recursive languages). Note, that for WP-recursive families a uniform solution for
the word-problem exists. Complexity classes are WP-recursive and closed under
variation by Lreg(X).

Considering Lreg(X) and Lcf(X) we obtain by the classical decidability results,
that the predicates emptycf(i) =“ecf(i) = Ø” and finitecf(i) =“ecf ∈ fin(X∗)”
(i ≥ 0) are recursive. Moreover, fsect ∈ rec2 (intersection with regular sets)
and fcomp ∈ rec1 (complementation of regular sets) exist with ecf(i) ∩ ereg(j) =
ecf(fsect(i, j)) and ereg(i)c = ereg(fcomp(i))(i, j ≥ 0). Using all these functions, we
find incl(i, j) =“ecf(i) ⊆ ereg(j)”= emptycf(fsect(i, fcomp(j)))(i, j ≥ 0), hence
incl ∈ rec2.

In the following, at various points we are faced with marking languages at the
left, i.e. we have to consider the left translation ”wL”.

Proposition 1.3. For all languages L, L1,2 and w ∈ X∗:
(1) w(L1 ∪ L2) = wL1 ∪ wL2 and w(L1 ∩ L2) = wL1 ∩ wL2,
(2) wLc = (wL)c ∩ wX∗ and (wL)c = wLc ∪ (wX∗)c.

For a language family L define Lltr = {wL|w ∈ X∗, L ∈ L} (left translation).
Lltr is another closure operation and L = Lltr if and only if xL ∈ L for any x ∈ X.
Moreover, a companion to proposition 1.2.(1) (with V = fin(X∗)) holds.

Proposition 1.4. Let L = Lu = Lltr. Then fin(X∗)cc ⊆ L if and only if
Ø,1, X∗ ∈ L.

Proof. Let Ø,1, X∗ ∈ L. Since w = w1 and L = Lltr, singletons are in L. But
then fin(X∗) ⊆ L, because L = Lu. Let Xk = {w ∈ X∗||w| = k}(k ≥ 0). Then
Xk is finite. Hence XkX∗ is the finite union of sets wX∗, i.e. XkX∗ ∈ Lu = L.
Let L ∈ fin(X∗) and k > max{|w||w ∈ L}, then Lc = ((XkX∗)c\L) ∪ XkX∗.
Note that ((XkX∗)c\L) is finite and therefore an element of L as shown before.
In total Lc ∈ fin(X∗)⊕ L ⊆ Lu = L, i.e. fin(X∗)co ⊆ L. �

In connection with boolean operations we get

Lemma 1.5. If L = Lltr, then

(1) (Lu)ltr = Lu and (Ls)ltr = Ls.
(2) (Lcc)ltr = Lcc, if additionally L ± Lreg(X) ⊆ L.

Proof. (1) By prop.1.3.(1): (Lu)ltr ⊆ (Lltr)u = Lu. Analogously, (Ls)ltr ⊆ Ls.
(2) Since wX∗ ∈ Lreg(X) for all w ∈ X∗, we get by our assumption, prop1.3.(2)
and prop.1.2.(2) (Lco)ltr ⊆ (Lltr)co � Lreg(X) ⊆ (Lltr)cc ± Lreg(X) = Lcc ±
Lreg(X) ⊆ Lcc. This shows (Lcc)ltr ⊆ Lcc. �

Next we look at the inverse of left translations (removing left markers).

Definition 1.6. L is ltr-cancellative if and only if for all L ⊆ X∗ and w ∈ X∗ :
wL ∈ L ⇒ L ∈ L.
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Proposition 1.7. If L is ltr-cancellative, then

(1) Lu is ltr-cancellative
(2) Lco is ltr-cancellative, if additionally L ± Lreg(X) ⊆ L.

Proof. (1) Let wL = L1∪. . .∪Ln with Li ∈ L for 1 ≤ i ≤ n. Then each Li ⊆ wX∗,
i.e. Li = wL′i. Since L is ltr-cancellative, L′i ∈ L. But then L = L′1∪. . .∪L′n ∈ Lu.
(2) If wL ∈ Lco, then (wL)c ∈ L. Since (wL)c = wLc ∪ (wX∗)c by prop.1.3.(2)
and L±Lreg(X) ⊆ L, we get wLc ∈ L and therefore Lc ∈ L. Hence L ∈ Lco, i.e.
Lco is ltr-cancalative. �

All families from the Chomsky hierarchy and all complexity classes are ltr-
cancellative and closed under left translation.

2. Cohesiveness

Definition 2.1. A is F-cohesive (A ∈ cohesive(F)) if and only if A /∈ fin(S)
and for any B ∈ Fdc : (A ∩B /∈ fin(S) ⇒ A ∩Bc ∈ fin(S)).

Remark: The definition of cohesiveness given in §12.3 of [8] is equivalent to
Lr.e.(X)cc-cohesiveness.

Directly from the definition we get

Proposition 2.2.

(1) cohesive(F) = cohesive(Fco) = cohesive(Fdc)
(2) F1 ⊆ F2 ⇒ cohesive(F2) ⊆ cohesive(F1).

Next we study the influence of closure operations on cohesiveness. Especially, we
discuss boolean operations and closure under finite variation and left translation.

Lemma 2.3. If F = Fcc, then cohesive(F) = cohesive(Fb).

Proof. By our assumption Fb = (Fs)u. Consider A ∈ cohesive(F) and B ∈ Fb

with A ∩B /∈ fin(S). Then B = B1 ∪ . . . ∪Bn with Bi ∈ Fs for 1 ≤ i ≤ n. Now,
A∩ (B1 ∪ . . .∪Bn) = (A∩B1)∪ . . .∪ (A∩Bn) /∈ fin(S). But then C = Bj exists
with A ∩ C /∈ fin(S). Since C ⊆ B, we know that A ∩ Bc ⊆ A ∩ Cc. Hence, if
A ∩ Cc ∈ fin(S), then A ∩Bc ∈ fin(S).

Since C ∈ Fs, C = C1 ∩ . . . ∩ Cm with Ci ∈ F for 1 ≤ i ≤ m. Furthermore,
A∩C /∈ fin(S), so that for every i, A∩Ci /∈ fin(S). But then, by the cohesiveness
of A, A∩Cc

i ∈ fin(S) for 1 ≤ i ≤ m and therefore A∩Cc = A∩(C1∩ . . .∩Cm)c =
A ∩ (Cc

1 ∪ . . . ∪ Cc
m) = (A ∩ Cc

1 ) ∪ . . . ∪ (A ∩ Cc
n) ∈ fin(S). �

Proposition 2.4. cohesive(F) is closed under finite variation.

Proof. Consider A ∈ cohesive(F), C ∈ fin(S) and some B ∈ F . Assume that
(A∪C)∩B = (A∩B)∪ (C ∩B) /∈ fin(S). Since C ∩B ∈ fin(S), A∩B /∈ fin(S)
and therefore A∩Bc ∈ fin(S) due to the cohesiveness of A. Since C∩Bc ∈ fin(S)
as well, (A ∪ C) ∩Bc = (A ∩Bc) ∪ (C ∩Bc) ∈ fin(S).

In the second step, assume that (A ∩ Cc) ∩ B = (A ∩ B) ∩ Cc /∈ fin(S).
Then A ∩ B /∈ fin(S), i.e. A ∩ Bc ∈ fin(S), because A is F-cohesive. But then
(A ∩ Cc) ∩Bc = (A ∩Bc) ∩ Cc ∈ fin(S). �
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For S = X∗ and left translation we can show

Lemma 2.5. If L is ltr-cancellative, L = Lltr and L±Lreg(X) ⊆ L, then for any
L ∈ L, w ∈ X∗ : L ∈ cohesive(L) if and only if wL ∈ cohesive(L).

Proof. Suppose L ∈ cohesive(L), i.e. L ∩ B /∈ fin(S) implies L ∩ Bc ∈ fin(S)
for any B ∈ L. Consider w ∈ X∗ and B ∈ Ldc with wL ∩ B /∈ fin(S). Then
we have to show, that wL ∩ Bc ∈ fin(S). Clearly, wL ∩ B = w(L ∩ A) for A
with wA = B ∩ wX∗. Thus, A ∈ L, since L is ltr-cancellative and closed under
finite variation by regular sets. By the same arguments we get Ac ∈ L, too:
To see this, observe that wAc = (wA)c ∩ (wX∗) by prop.1.3.(2) and therefore
wAc = (B ∩ wX∗)c ∩ wX∗ = (Bc ∪ (wX∗)c) ∩ wX∗ = Bc ∩ wX∗.

Now, wL ∩B /∈ fin(S) implies L ∩A /∈ fin(S). Hence, L ∩Ac ∈ fin(S) by the
cohesiveness of L. Since by prop.1.3.(1), w(L ∩ Ac) = wL ∩ wAc = wL ∩ (Bc ∩
wX∗) = wL ∩Bc, wL ∩Bc must be finite, too.

Conversely, suppose wL ∈ cohesive(L) for some w ∈ X∗. Fix B ∈ Ldc with
L ∩ B /∈ fin(S). We show, that L ∩ Bc is finite. Observe, that wB ∈ Ldc by the
closure properties of L. Now, L ∩B /∈ fin(X∗) implies wL ∩ wBc /∈ fin(X∗) and
therefore wL ∩ (wB)c ∈ fin(X∗), because wL is L-cohesive. But wL ∩ (wB)c =
wL ∩ wBc = w(L ∩Bc), i.e. L ∩Bc ∈ fin(X∗). �

The existence of cohesive sets for denumerable set families is guaranteed by a
result of J. C. E. Dekker and J. Myhill (cf. Theorem VI in §12.3 of [8]).

Theorem 2.6. (Dekker and Myhill) Let F be an denumerable set family. Then
for any A /∈ fin(S) there is a subset B of A with B ∈ cohesive(F).

The following fact is obvious:

Proposition 2.7. If B ⊆ A,B /∈ fin(S) and A ∈ cohesive(F) then B ∈
cohesive(F).

A natural generalization of Theorem VII(ii) in §12.3 of [8] is

Lemma 2.8. If A,B ∈ cohesive(F)and A∩B /∈ fin(S) then A∪B ∈ cohesive(F)

Remark: Note that the condition ”A ∩ B /∈ fin(S)” in le.2.8. is necessary.
To see this, consider X = {a, b} and L satisfying the condition of le.2.5. If L ∈
cohesive(L), then aL, bL ∈ cohesive(L). But (aL ∪ bL) ∩ aX∗ = aL /∈ fin(X∗)
and bL ⊆ (aL ∪ bL) ∩ (aX∗)c /∈ fin(X∗). Hence, aL ∪ bL /∈ cohesive(L).

Cohesiveness is a stronger condition than immunity for sets in connection with
set families. For a set family F a set A is defined to be F-immune if it is infinite and
has no infinite subset in F , i.e. ifAc∩B 6= Ø for anyB ∈ F\fin(S) (cf. e.g. [2], [8]).
Let immune(F) denote the family of all F-immune sets. Clearly, infinite subsets
of F-immune sets are F-immune and immune(F2) ⊆ immune(F1), if F1 ⊆ F2.

Proposition 2.9. If F is closed under finite variation and A ∈ cohesive(F) \ F
then A ∈ immune(F).

Proof. Suppose B ∈ F \fin(S) exists with Ac∩B = Ø. Then A∩B = B /∈ fin(S)
and therefore A ∩ Bc ∈ fin(S), because A is F-cohesive. Since F is closed under
finite variation A = B ∪ (A ∩Bc) ∈ F - a contradiction. �
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Remark: Theorem V in §12.3 of [8] shows, that any L ∈ cohesive(Lr.e.(X)cc)
is not only immune but hyperimmune and even hyperhyperimmune.

Example 2.10. Let X = {a, b}. Then A = {anbn|n > 0} is Lreg(X)-immune
(use the pumping lemma for Lreg(X)), but not Lreg(X)-cohesive (consider e.g.
R = (a2)∗(b2)∗).

Example 2.11. F-cohesive languages need not necessarily be outside of L:

(1) Any A /∈ fin(S) is fin(S)cc-cohesive, for example X∗(∈ fin(X∗)cc).
(2) By a theorem of Friedberg L ∈ Lr.e.(X)co exists with

L ∈ cohesive(Lr.e.(X)cc) (see Theorem XI in 12.4 of [8] for details).

3. Cohesiveness of Languages

We derive special results for cohesiveness with respect to language families,
especially for the families from the Chomsky hierarchy and complexity classes.
For all these families L any L-cohesive language has a specific structural property.
This property is connected to infinite words. Infinite words can be defined using
pref -isotone and length-preserving functions.

Definition 3.1. f : N0 → X∗ is sequential if and only if for any n ≥ 0 : |f(n)| = n
and f(n) ≤ f(n+ 1)(pref).

Lemma 3.2. If #(X) > 1 and L ∈ cohesive(Lreg(X)), then a sequential
fL : N0 → X∗ exists with L \ fL(n)X∗ ∈ fin(X∗) for any n ≥ 0.

Proof. The key to the proof is the following
Assertion: If L ∈ cohesive(Lreg(X)), then for all u, v ∈ X∗ with |u| = |v| :

L ∩ uX∗, L ∩ vX∗ /∈ fin(X∗) implies u = v.
Suppose the contrary, i.e. u, v ∈ X∗ exist with |u| = |v|, L ∩ uX∗, L ∩ vX∗ /∈

fin(X∗) and u 6= v. Then uX∗ ∩ vX∗ = Ø. Hence, vX∗ ∩ L ⊆ (uX∗)c ∩ L and
therefore (uX∗)c ∩L /∈ fin(X∗). Thus, L /∈ cohesive(Lreg(X)) - a contradiction.

Since L /∈ fin(X∗), we can find to any n ≥ 0 some w ∈ X∗ with |w| = n
and L ∩ wX∗ /∈ fin(X∗). Define fL(n) = w. By the assertion fL is uniquely
determined. Furthermore, if u ≤ w(pref), then L ∩ wX∗ ⊆ L ∩ uX∗. Hence,
L ∩ uX∗ /∈ fin(X∗) and by the assertion fL(|u|) = u. That is, fL is sequential.
Moreover, since L ∈ cohesive(Lreg(X)), L ∩ (fL(n)X∗)c ∈ fin(X∗) for all
n ≥ 0. �

From the assertion in this proof we get additionally the following

Corollary 3.3. If #(X) > 1 and L ∈ cohesive(Lreg(X)), then for any L′ ⊆ L
with L′ /∈ fin(X∗) : fL = fL′ .

Proof. Suppose n ≥ 0 exists with fL(n) 6= fL′(n). We know by le.3.2. and
prop.2.7. that L′∩fL′(n)X∗, L∩fL(n)X∗ /∈ fin(X∗). Furthermore, L′∩fL′(n)X∗ ⊆
L∩fL′(n)X∗. Hence, L∩fL′(n)X∗ is infinite. This is a contradiction to the above
assertion. �
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Next, we focus our attention to Lreg(X)-cohesiveness in connection with Lcf(X)

and Lcs(X). To L ⊆ X∗ we associate the length-language |L| = {a|w||w ∈ L} =
λx(L), where λx(w) = |w|(w ∈ X∗). Define Llreg(X) = {L ⊆ X∗||L| ∈ Lreg(a)}.
Note that {anbnan|n ≥ 0} ∈ Llreg({a, b}).

Lemma 3.4. If L ∈ Llreg(X), then L /∈ cohesive(Lreg(X)).

Proof. Since L /∈ fin(X∗), |L| ∈ Lreg(a) /∈ fin(X∗). By the pumping lemma for
Lreg(a) α > 0 and β ≥ 0 exist with (aα)∗aβ ⊆ |L|. Consider R = (a2α)∗aβ ∈
Lreg(a)\fin(a∗). Then R ⊆ |L| and Rc ∩ |L| /∈ fin(a∗). But λ−1x (R), λ−1x (Rc) ∈
Lreg(X), L ∩ λ−1x (R), L ∩ λ−1x (Rc) /∈ fin(X∗) and λ−1x (Rc) ⊆ λ−1x (R)c. �

Since Lreg(X) ⊆ Lcf(X) ⊆ Llreg(X), we get immediately

Lemma 3.5. If L ∈ cohesive(Lcf(X)), then L /∈ Lcf(X).

Inspecting the ”construction” from the proof of the Dekker-Myhill-theorem
(Theorem VI in §12.3 of [8]) yields

Theorem 3.6. For any L ∈ Lcf(X) \ fin(X∗) a recursive language L′ ⊆ L exists
with L′ ∈ cohesive(Lreg(X)).

Proof. We refine the proof of the Myhill-Dekker-theorem. Define inductively

L0 = L,

Ln+1 = if Ln ∩ ereg(n) /∈ fin(X∗) then Ln ∩ ereg(n) else Ln ∩ ereg(n)c fi

(n ≥ 0).

Then for n ≥ 0 Ln+1 ⊆ Ln and Ln ∈ Lcf(X). Moreover, Ln /∈ fin(X∗)
and Ln /∈ cohesive(Lreg(X)) by le.3.5. Now, a function g exists with Lg(n+1) ⊂
Lg(n) ⊆ Ln. Define the function h by h(n) = min{m|char∗(m) ∈ Lg(n) \ Lg(n+1)}
(n ≥ 0). Let L′′ = char∗(h(N0)). The above mentioned proof of Theorem VI in
§12.3 of [8] asserts L′′ ∈ cohesive(Lreg(X)).

It remains to prove, that any step in this construction is computable. Let
ecf(i0) = L. Define

f(0) = i0,

f(n+ 1) = if finitecf(fsect(f(n), n)) = 0 thenfsect(f(n), n)

else fsect(f(n), fcomp(n)) fi (n ≥ 0).

Since finitecf is recursive, f ∈ rec1 and ecf(f(n)) = Ln(n ≥ 0). Next, consider
the predicate d defined by d(n,m) = ”(m > n) and (Ln = Lm)”. Then d(n,m) =
”(m > n) and (∀1 ≤ i ≤ m−n : Ln+i = Lm)” = ”(m > n) and (∀0 ≤ i ≤ m−n :
(Ln+i ⊆ ereg(n + i)) or (Ln+i ⊆ ereg(n + i))c)”. Using incl and fcomp we get
d ∈ rec2. By this the function g′(n) = min{m|(m > n) and d(f(n),m) = 0} is
recursive, as well. Now, with the help of f, g′ the function g from above can be
defined by g(0) = f(0), g(n) = f(g′(n − 1))(n > 0), i.e. g ∈ rec1, since f, g′ ∈
rec1. Since w(m,n) = ”char∗(m) ∈ Lg(n) \ Lg(n+1)” = wordcs(m, f(g(n))) is a
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recursive function, h(n) = min{m|char∗(m) ∈ Lg(n)\Lg(n+1)} ∈ rec1 and we can
conclude that L′′ = char∗(h(N0)) ∈ Lr.e.(X). But then an infinite L′ ⊆ L′′ exists
with L′ ∈ Lrec(X). Since L′′ ∈ cohesive(Lreg(X)), L′ ∈ cohesive(Lreg(X)),
too. �

Dealing with Lcs(X) we can use number-theoretic considerations. In the case
X = {a} we know Lreg(X) = Lcf(X) and can use the pumping lemma for regular
sets.

Lemma 3.7. (number-problems) Let X = {a}.
(1) Lexp = {a2n |n > 0} /∈ cohesive(Lreg(X)) and Lexp ∈ Lcs(X).
(2) Lfac = {an!|n > 0} ∈ cohesive(Lreg(X)) and Lfac ∈ Lcs(X).

Proof. (1) Clearly, 22kmod 3 = (3 + 1)kmod 3 = 1 Hence 22k+1mod 3 =

2(22k mod 3) mod 3 = 2. By this {a22k |k ≥ 0} ⊆ a(a3)∗ = R, while {a22k+1 |k ≥
0} ⊆ Rc. In total Lexp /∈ cohesive(Lreg(X)), because Lexp ∩ R,Lexp ∩ Rc /∈
fin(a∗).

(2) Consider R ∈ Lreg(X) with Lfac ∩R /∈ fin(a∗). Using the pumping lemma
for Lreg(X) α > 0 and β exist with Lfac ∩ aβ(aα)∗ /∈ fin(a∗) and aβ(aα)∗ ⊆ R.
Due to the infinity of the intersection we can find some y ≥max(α, β), such that
αx + β = y! for some x ∈ N0. Since y ≥ α, α divides y!. Hence, β is an integer
multiple of α, too and we get αx + β = α(x + β′) = y! for some β′ ≤ y. But

then for any y′ ≥ y a z exists with α(z + β′) = y′!, namely z = (x + β′)y
′!
y! − β

′,

and we get in total Lfac ∩ aβ(aα)∗ = Lfac \ C for some finite set C and therefore
Lfac ∩Rc ∈ fin(a∗). �

A result similar to le.3.5. is

Proposition 3.8. If L ∈ cohesive(Lrec(X)), then L /∈ Lr.e.(X).

Proof. Consider L ∈ cohesive(Lrec(X)) and suppose that L ∈ Lr.e.(X). Since L
is infinite, L′ ∈ Lrec(X) \ fin(X∗) exists with L′ ⊆ L. Clearly, L = L1 ∪ L2 with
L1,2 ∈ Lrec(X) \ fin(X∗) and L1 ∩ L2 = ∅. But then L ∩ L1 = L1 /∈ fin(X∗) and
L ∩ L2 ⊆ L ∩ Lc

1 /∈ fin(X∗) - a contradiction. �

4. Solvability of Promise Problems

Remember that given a set familie F (A,B) is a promise problem, if A∩B = ∅.
To F we associate the set of promise problems , which are solvable with respect
to F , i.e. we consider promise(F) = {(A,B)|A ∩ B = Ø and ∃Q ∈ Fdc : A ⊆
Q and B ⊆ Qc}. We collect some elementary facts about promise(F), which
follow more or less directly by the definition, especially by using the laws of De
Morgan and distributivity.

Proposition 4.1.

(1) (A,B) ∈ promise(F) ⇔ (B,A) ∈ promise(F).
(2) B′ ⊆ B and (A,B) ∈ promise(F) ⇒ (A,B′) ∈ promise(F).
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(3) A ∈ Fdc and A ∩B = ∅ ⇒ (A,B) ∈ promise(F).
(4) A ∈ Fdc ⇔ (A,Ac) ∈ promise(F).
(5) F ′ ⊆ F ⇒ promise(F ′) ⊆ promise(F).
(6) promise(F) = promise(Fco) = promise(Fdc).
(7) If F = (Fu)s then (A,B) ∈ promise(F) and

(A,B′) ∈ promise(F)⇒ (A,B ∪B′) ∈ promise(F).
(8) If F ± V ⊆ F then ∀C ∈ V :

(A,B) ∈ promise(F)⇒ (A ∪ C,B ∩ Cc) ∈ promise(F).

Example 4.2. Consider X = {a, b} and the languages A = {anbn|n > 0} and
B = {anbm|n,m > 0 and n 6= m}. Then A,B,Ac ∈ Lcf(X) and B ⊆ Ac, hence
(A,B) ∈ promise(Lcf(X)). We show, that (A,B) /∈ promise(Lreg(X). Suppose
the contrary, i.e. a Q ∈ Lreg(X) exists with A ⊆ Q and B ⊆ Qc. Consider a word
w0 = anbn, where n is sufficiently large. By the pumping lemma for regular sets
u, v, w ∈ X∗, w 6= 1 exist with w0 = uwv, |uw| ≤ n and uwkv ∈ Q for all k ≥ 0.
But then uw = ai for some 1 ≤ i ≤ n and therefore uw2v = an+|w|bn ∈ B ∩Q. In
total, B ∩Q 6= ∅ and we get a contradiction.

The following criterion asserts for a promise problem (A,B) the existence of a
nontrivial solvable subproblem.

Lemma 4.3. Let V ⊆ F and F ± V ⊆ F . Then for all A,B ∈ F \ fin(S) with
A /∈ cohesive(V) a Q ∈ Vdc exists, such that A ∩ Q,B ∩ Qc ∈ F \ fin(S) and
(A ∩Q,B ∩Qc) ∈ promise(V).

Proof. LetA,B be given according to the assumption. SinceA /∈ cohesive(V),Q ∈
Vdc exists with A ∩ Q,A ∩ Qc /∈ fin(S). But then B ∩ Q or B ∩ Qc must be in-
finite, because otherwise B = (B ∩ Q) ∪ (B ∩ Qc) ∈ fin(S). If B ∩ Qc /∈ fin(S),
A∩Q,B∩Qc ∈ F \fin(S) and (A∩Q,B∩Qc) ∈ promise(V). If B∩Q /∈ fin(S),
A ∩Qc, B ∩Q ∈ F \ fin(S) and (A ∩Qc, B ∩Q) ∈ promise(V). �

It is interesting to look at Lr.e.(X). Consider a promise problem (A,B) with
A ∈ Lr.e.(X) \ fin(X∗). Then C ⊆ A exists with C ∈ Lrec(X) \ fin(X∗). Hence,
(C,B) ∈ promise(Lrec(X)) = promise(Lr.e.(X)), since B ⊆ Ac ⊆ Cc. In con-
trast to this fact, there exists a promise problem (A,B) with A,B ∈ Lr.e.(X) and
(A,B) /∈ promise(Lr.e.(X)) (cf. exercise 5-34. in [8]). But if A,B ∈ Lr.e.(X)co,
then (A,B) ∈ promise(Lr.e.(X)co) (cf. exercise 5-33. in [8]).

We conclude this section looking at left translations.

Lemma 4.4. Let L be ltr-cancellative, L = Lltr and L ± Lreg(X) ⊆ L. Then for
all A,B ⊆ X∗, w ∈ X∗ : (A,B) ∈ promise(L) ⇔ (wA,wB) ∈ promise(L).

Proof. Suppose (A,B) ∈ promise(L). Then Q ∈ Ldc exists with A ⊆ Q and
B ⊆ Qc. But then wA ⊆ wQ and wB ⊆ wQc ⊆ (wQ)c = wQc ∪ (wX∗)c. Since
L = Lltr and L ± Lreg(X) ⊆ L, we get wQ, (wQ)c ∈ L.

Conversely, suppose (wA,wB) ∈ promise(L). Then we find a Q ∈ Ldc with
wA ⊆ Q and wB ⊆ Qc. But then wA ⊆ Q ∩wX∗ = wQ′ and wB ⊆ Qc ∩wX∗ =
wQ′′. Since wQ′ ∪wQ′′ = (Q∩wX∗)∪ (Qc ∩wX∗) = wX∗ and wQ′ ∩ wQ′′ = ∅,
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Q′′ = Q′c. Hence, A ⊆ Q′ and B ⊆ Q′c. Again by the closure properties of L we
get Q′, Q′c ∈ L. �

5. Unsolvability of Promise Problems and Cohesiveness

The structure of promise problems is heavily influenced by cohesiveness, more
precisely if cohesiveness can be connected to a promise problem (A,B), then it is
not solvable.

Theorem 5.1. If F is closed under finite variation and A ∩ B = Ø, then the
following statements are equivalent:

(1) A,B /∈ fin(S) and A ∪B ∈ cohesive(F).
(2) A,B ∈ cohesive(F) and (A,B) /∈ promise(F).

Proof. (1)⇒ (2): Let A,B /∈ fin(S) and A∪B ∈ cohesive(F), then by prop.2.7.
A,B ∈ cohesive(F). Suppose to the contrary that (A,B) ∈ promise(F). Then
Q ∈ Fdc exists with A ⊆ Q and B ⊆ Qc. But then A ⊆ (A ∪ B) ∩ Q /∈ fin(S)
and B ⊆ (A ∪B) ∩Qc /∈ fin(S). This contradicts A ∪B ∈ cohesive(F).

(2) ⇒ (1): Let A,B ∈ cohesive(F) and (A,B) /∈ promise(F). Suppose that
A∪B /∈ cohesive(F), i.e. a Q ∈ Fdc exists with (A∪B)∩Q, (A∪B)∩Qc /∈ fin(S).
Let A1 = A ∩ Q, B1 = B ∩ Q, A2 = A ∩ Qc and B2 = B ∩ Qc. Then we get the
following two cases:

Case 1: A1,2 /∈ fin(S) or B1,2 /∈ fin(S). Then A = A1 ∪ A2 /∈ cohesive(F)
or B = B1 ∪B2 /∈ cohesive(F) - a contradiction.

Case 2: A1, B2 /∈ fin(S) and A2, B1 ∈ fin(S) or A2, B1 /∈ fin(S) and A1, B2 ∈
fin(S). Since (A1, B2), (A2, B1) ∈ promise(F), we can apply prop.4.1.(8) for
V = fin(S) and obtain (A,B) ∈ promise(F) - a contradiction, again. �

We can now characterize those A,B ∈ cohesive(F) with A∪B ∈ cohesive(F).

Theorem 5.2. If F is closed under finite variation and A,B ∈ cohesive(F),
then the following statements are equivalent:

(1) A ∪B ∈ cohesive(F)
(2) (A \B,B) /∈ promise(F) or A ∩B /∈ fin(S).

Proof. (1) ⇒ (2): Let A ∪ B ∈ cohesive(F) and suppose A ∩ B ∈ fin(S).
Then A \ B,B /∈ fin(S) and A \ B,B ∈ cohesive(F) by prop.4.1.(8). Clearly,
A∪B = (A\B)∪B and A\B∩B = ∅. Hence by th.5.1 (A\B,B) /∈ promise(F).

(2) ⇒ (1): Conversely, we have to consider two cases. First suppose that
A ∩ B ∈ fin(S) and (A \ B,B) /∈ promise(F). By assumption and prop.2.7.
A \B,B ∈ cohesive(F). Hence, A ∪B = A \B ∪B ∈ cohesive(F) by th.5.1. If
A ∩B /∈ fin(S), then by le.2.8. A ∪B ∈ cohesive(F). �

Th.5.1. deals essentially with ”unsolvability cores” of promise problems for F .
This leads to the following definition:
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Definition 5.3. (A,B) is a core of F((A,B) ∈ core(F)) if and only if A,B /∈
fin(S), A ∩ B = ∅ and for all A′ ⊆ A,B′ ⊆ B,A′, B′ /∈ fin(S) : (A′, B′) /∈
promise(F).

Proposition 5.4.

(1) core(F) = core(Fco) = core(Fdc)
(2) (A,B) ∈ core(F)⇔ (B,A) ∈ core(F).
(3) (A,B) ∈ core(F), A′ ⊆ A,B′ ⊆ B and A′, B′ /∈ fin(S)
⇒ (A′, B′) ∈ core(F).

Now, we want to show, that the condition ”A ∪B is F-cohesive” characterizes
completely the cores of F . The following lemma offers a property of cores, which
is similar to the definition of cohesive sets (def.2.1).

Lemma 5.5. If A,B /∈ fin(S) and A ∩ B = ∅ then the following statements are
equivalent:

(1) (A,B) ∈ core(F)
(2) ∀Q ∈ Fdc : (A ∩Q /∈ fin(S)⇔ B ∩Qc ∈ fin(S))

Proof. (1) ⇒ (2) : Let (A,B) ∈ core(F). Consider Q ∈ Fdc with A′ = A ∩ Q /∈
fin(S). Suppose to the contrary that B′ = B ∩ Qc /∈ fin(S). Then (A′, B′) ∈
promise(F), since A′ ⊆ Q and B′ ⊆ Qc. This contradicts (A,B) ∈ core(F).
Conversely, let B ∩Qc ∈ fin(S) and suppose A ∩Q ∈ fin(S). Then A′ = A ∩Qc

and B′ = B∩Q are infinite. Furthermore A′ ⊆ Qc and B′ ⊆ Q. Hence, (A′, B′) ∈
promise(F) and we get again a contradiction.

(2) ⇒ (1) : Let the equivalence be valid for any Q ∈ Fdc. Suppose to the
contrary that (A,B) /∈ core(F). Then A′ ⊆ A,B′ ⊆ B exist with A′, B′ /∈ fin(S)
and (A′, B′) ∈ promise(F). Hence, we can find Q ∈ Fdc with A′ ⊆ Q,B′ ⊆ Qc.
But then A′ ⊆ A∩Q and B′ ⊆ B∩Qc, i.e. A∩Q,B∩Qc /∈ fin(S) - a contradiction
to the equivalence. �

Remark: By prop.5.4.(1) le.5.5.(2) is equivalent to: ∀Q ∈ Fdc : (B ∩ Q /∈
fin(S)⇔ A ∩Qc ∈ fin(S)).

Theorem 5.6. If F is closed under finite variation, A∩B = Ø and A,B /∈ fin(S),
then the following statements are equivalent:

(1) (A,B) ∈ core(F)
(2) A ∪B ∈ cohesive(F)

Proof. (1) ⇒ (2) : Let (A,B) ∈ core(F). Consider Q ∈ Fdc with (A ∪ B) ∩Q /∈
fin(S). Then A ∩Q /∈ fin(S) or B ∩Q /∈ fin(S). If A ∩Q is finite, B ∩Q must
be infinite. But then A ∩Qc ∈ fin(S) by le.5.5. and therefore A ∈ fin(S), which
contradicts the assumption A /∈ fin(S). Hence, A ∩ Q must be infinite. By the
same reason B ∩ Q must be infinite, too. But then B ∩ Qc, A ∩ Qc ∈ fin(S) by
le.5.5. and therefore (A ∪B) ∩Qc ∈ fin(S). In total A ∪B ∈ cohesive(F).

(2) ⇒ (1) : Suppose that A ∪ B ∈ cohesive(F). Let A′ ⊆ A,B′ ⊆ B and
A′, B′ /∈ fin(S). Then A′∩B′ = ∅ and A′∪B′ ⊆ A∪B, i.e. A′∪B′ ∈ cohesive(F).
But then (A′, B′) /∈ promise(F) by th.5.1. and therefore (A,B) ∈ core(F). �
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Corollary 5.7. If F is closed under finite variation, A,B,C /∈ fin(S), B ⊆ C
and A ∩ C = Ø, then (A,B) ∈ core(F) and C ∈ cohesive(F) implies (A,C) ∈
core(F).

Proof. Let A,B,C be given according to the assumption. Consider (A,B) ∈
core(F) and C ∈ cohesive(F). Then A ∪ B ∈ cohesive(F) by th.5.6. Since
(A∪B)∩C = B /∈ fin(S), we get (A∪B)∪C = A∪C ∈ cohesive(F) by le.2.8.
In conclusion (A,C) ∈ core(F) by th.5.6. �

Moreover, we obtain the transitivity of cores.

Corollary 5.8. If F is closed under finite variation and A∩B = A∩C = B∩C =
∅, then (A,B) ∈ core(F) and (B,C) ∈ core(F) implies (A,C) ∈ core(F).

Proof. Let A,B,C be given according to the assumption. Let (A,B) ∈ core(F)
and (B,C) ∈ core(F). Then B ∪ C ∈ cohesive(F) by th.5.6. Hence C ∈
cohesive(F) by prop.2.7. But now, (A,B ∪ C) ∈ core(F) by cor.5.7. and there-
fore (A,C) ∈ core(F) by prop.5.4.(2). �

Combining th.5.6 with le.2.3. we get

Corollary 5.9. If F is closed under finite variation and F = Fcc, then core(F) =
core(Fb).

In contrast to the transitivity of cores, the property not belonging to promise(F)
is transitive only with an additional condition.

Lemma 5.10. Let F be closed under finite variation and A∩B = A∩C = B∩C =
∅. If B ∈ cohesive(F), then (A,B) /∈ promise(F) and (B,C) /∈ promise(F)
implies (A,C) /∈ promise(F).

Proof. Suppose that (A,B) /∈ promise(F), (B,C) /∈ promise(F) and (A,C) ∈
promise(F). Let Q ∈ Fcd with A ⊆ Q and C ⊆ Qc. Since B ∈ cohesive(F),
B ∩Q or B ∩Qc has to be finite. By symmetry we can assume, that D = B ∩Q ∈
fin(S). But then, A∪D ⊆ Q and C ∪ (B∩Dc) ⊆ Qc, i.e. (A∪D,C ∪ (B∩Dc)) ∈
promise(F). Thus, (A ∪ D,B ∩ Dc) ∈ promise(F), too and we can apply
prop.4.1.(8) and conclude, that (A,B) ∈ promise(F) - a contradiction. �

As shown in [1] by a marking technique this kind of transitivity is not valid in
the general case. The same technique is used in

Example 5.11. Let X = {a, b}. Consider a language family L satisfying the
condition of le.4.4. Choose A with A,Ac /∈ L. Then (A,Ac) /∈ promise(L) and
by le.4.4 (xA, xAc) /∈ promise(L) for any x ∈ X. Hence (aA, aAc ∪ bAc), (aAc ∪
bAc, bA) /∈ promise(L). But (aA, bA) ∈ promise(L).

Next we want to show, that under some closure condition for F any (A,B) /∈
promise(F) contains a core of F . We shall use a construction similar to the
construction in the proof of the Dekker-Myhill theorem. For this purpose the
following lemma is crucial.
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Lemma 5.12. If Fu = F = Fs and (A,B) /∈ promise(F), then for all Q ∈ Fdc :
(A ∩Q,B ∩Q) /∈ promise(F) or (A ∩Qc, B ∩Qc) /∈ promise(F).

Proof. Suppose to the contrary a Q ∈ Fdc exists, such that (A ∩ Q,B ∩ Q) ∈
promise(F) and (A ∩ Qc, B ∩ Qc) ∈ promise(F). Then we can find Q1,2 ∈
Fdc with A ∩ Q ⊆ Q1, B ∩ Q ⊆ Qc

1 and A ∩ Qc ⊆ Q2, B ∩ Qc ⊆ Qc
2. Now,

A = (A ∩Q) ∪ (A ∩Qc) ⊆ (Q1 ∩Q) ∪ (Q2 ∩Qc) and B = (B ∩Q) ∪ (B ∩Qc) ⊆
(Qc

1∩Q)∪(Qc
2∩Qc). Let QA = (Q1∩Q)∪(Q2∩Qc) and QB = (Qc

1∩Q)∪(Qc
2∩Qc).

Then QA ∪ QB = Q ∪ Qc = S and QA ∩ QB = ∅. Hence, QB = Qc
A. Since

A ⊆ QA, B ⊆ QB = Qc
A and QA, QB ∈ F we get by the closure properties of F in

total (A,B) ∈ promise(F) - a contradiction. �

Theorem 5.13. If F is denumerable, closed under finite variation and Fu = F =
Fs, then for all (A,B) with A∩B = ∅ and (A,B) /∈ promise(F), A′ ⊆ A,B′ ⊆ B
exist, such that (A′, B′) ∈ core(F).

Proof. Let eF : N0 → 2S with eF (N0) = F and (A,B) /∈ promise(F). Then we
construct the following sequence of pairs (An, Bn) for n ≥ 0 inductively by

(A0, B0) = (A,B)

(An+1, Bn+1) = if (An ∩ eF (n), Bn ∩ eF (n)) /∈ promise(F)

then (An ∩ eF (n), Bn ∩ eF (n))

else (An ∩ eF (n)c, Bn ∩ eF (n)c) fi.

Assertion 1: ∀n ≥ 0 : An+1 ⊆ An, Bn+1 ⊆ Bn and (An, Bn) /∈ promise(F).
Clearly, An+1 ⊆ An and Bn+1 ⊆ Bn for n ≥ 0 follows directly from the def-

inition. The second part of the assertion is proven by induction on n. If n = 0
then (A0, B0) = (A,B) /∈ promise(F) by assumption. Consider (An+1, Bn+1).
If (An ∩ eF (n), Bn ∩ eF (n)) /∈ promise(F), nothing is to prove. Suppose (An ∩
eF (n), Bn ∩ eF (n)) ∈ promise(F). Since Fu = F = Fs, we get by le.5.12.
(An+1, Bn+1) = (An ∩ eF (n)c, Bn ∩ eF (n)c) /∈ promise(F).

Assertion 2: ∀n ≥ 0 ∃k ≥ n : Ak ⊂ An and Bk ⊂ Bn.
Assume n ≥ 0 exists with Aj = An for all j ≥ n. Since An /∈ fin(S), x, y ∈

An exist with x 6= y. Since F is closed under finite variation, x ∈ eF (m) and
y ∈ eF (m)c for some m. Furthermore m ≥ n, otherwise x and y can not be both
in An. Hence, by construction either x /∈ Am+1 or y /∈ Am+1, i.e. Am+1 6= An,
while on the other side by our assumption Am+1 = Am = An - a contradiction.
Analogously, m′ ≥ n exists with Bm′ ⊂ Bn. Choosing k = max (m,m′) we get
the result by ass.1.

On the basis of ass.2 a function g : N0 → N0 exists with Ag(i+1) ⊂ Ag(i) ⊂ Ai
and Bg(i+1) ⊂ Bg(i) ⊂ Bi for any i ≥ 0. But then two sequences ai and bi
exist with ai ∈ Ag(i) \ Ag(i+1) and bi ∈ Bg(i) \ Bg(i+1)(i ≥ 0) and the property:
0 ≤ i < j ⇒ ai 6= aj and bi 6= bj . Hence, the two sets A′ = {ai|i ≥ 0} and
B′ = {bi|i ≥ 0} are both infinte. Furthermore, A′ ∩B′ = ∅, since A′ ⊆ A,B′ ⊆ B
and A ∩B = ∅.
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Now, we can show that A′∪B′ ∈ cohesive(F). Then A′∪B′ ∈ core(F) follows
directly by th.5.6. completing the proof of the theorem.

Consider Q ∈ Fdc, i.e. Q = eF (m) for some m ≥ 0. Then (Am+1, Bm+1) =
(Am ∩ eF (m), Bm ∩ eF (m)) or (Am+1, Bm+1) = (Am ∩ eF (m)c, Bm ∩ eF (m)c).
Hence, by definition of g:

(1) Ag(m+1) ∪Bg(m+1) ⊂ Am+1 ∪Bm+1 ⊂ eF (m) or
(2) Ag(m+1) ∪Bg(m+1) ⊂ Am+1 ∪Bm+1 ⊂ eF (m)c.

Consider the first case. Observe that A′ ∩ Ag(k) = {ai|i ≥ k} and B′ ∩ Bg(k) =
{bi|i ≥ k}, i.e. almost all ai belong to A′ ∩ Ag(k) and almost all bi belong to
B′ ∩Bg(k) for any k ≥ 0. Noticing A′ ∩B = ∅ = A ∩B′, we get

(A′ ∪B′) ∩Q = (A′ ∪B′) ∩ eF (m)

= (A′ ∪B′) ∩ (Ag(m+1) ∪Bg(m+1))

= (A′ ∩Ag(m+1)) ∪ (B′ ∩Bg(m+1))

= (A′ ∩B′) \ C

for some finite set C, i.e. (A′ ∪ B′) ∩ Qc ∈ fin(S). Completely analogously, we
find in the second case (A′∪B′)∩Q ∈ fin(S). Hence, A′∪B′ ∈ cohesive(F). �

Corollary 5.14. If F is denumerable, closed under finite variation and F = Fcc,
then for all (A,B) /∈ promise(F), A′ ⊆ A,B′ ⊆ Bexist with (A′, B′) ∈ core(F).

Proof. Since core(F) = core(Fb) by cor.5.9., the conditions of th.5.13. are met
for Fb. Hence, we find A′ ⊆ A,B′ ⊆ B with (A′, B′) ∈ core(Fb) = core(F). �

The following example shows, that the closure conditions of th.5.13. respec-
tively cor.5.14. are necessary. If we look for example at the family of contextfree
languages which is closed neither under intersection nor under complement, we
find unsolvable promise problems without cores.

Example 5.15. ConsiderX = {a, b, c}. For x ∈ X and w ∈ X∗ let |w|x denote the
number of occurences of x in w. Then define for x, y ∈ X with x 6= y : Lx,y = {w ∈
X∗||w|x 6= |w|y}. Lx,y ∈ Lcf(X), moreover, Lx,y is a deterministic contextfree
language, hence Lc

x,y ∈ Lcf(X). Consider A = La,b∪Lb,c∪Lc,a and B = Ac = {w ∈
X∗||w|a = |w|b = |w|c} = Lc

a,b ∩ Lc
b,c ∩ Lc

c,a. Then A ∈ Lcf(X), B /∈ Lcf (X), B ∈
Lcf(X)co and B ∈ Lcf(X)s. This shows (A,B) /∈ promise(Lcf(X)), (A,B) ∈
promise(Lcf(X)co) and (A,B) ∈ promise(Lcf(X)s).

Now, suppose A′, B′ /∈ fin(S) exist with A′ ⊆ A,B′ ⊆ B and (A′, B′) ∈
core(Lcf(X)). Since A′ is infinite, A′ ∩ Lx,y is infinite for at least one of the
pairs (x, y). Assume without loss of generality x = a and y = b. But then,
(A′ ∩ La,b, B′) ∈ core(Lcf(X)) and therefore (A′ ∩ La,b, B′) /∈ promise(Lcf(X)).
On the other side, A′ ∩ La,b ⊆ La,b and B′ ⊆ B ⊆ Lc

a,b, i.e. (A′ ∩ La,b, B′) ∈
promise(Lcf(X)) and we get a contradiction.

We get one further corollary of theorem 5.13. For F and A /∈ fin(S) define
core(A,F) = {B|B /∈ fin(S), A ∩ B = ∅ and ∀B′ ⊆ B,B′ /∈ fin(S) : (A,B′) /∈
promise(F)}.
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Corollary 5.16. If F is denumerable, closed under finite variation and Fu =
F = Fs, then for all A,Ac /∈ F ∪ fin(S)cc : core(A,F) 6= Ø.

Proof. By prop.4.1(4) (A,Ac) /∈ promise(F). By th.5.13. A′ ⊆ A,B′ ⊆ Ac exist
with (A′, B′) ∈ core(F). Then for any B′′ ⊆ B with B′′ /∈ fin(S), (A′, B′′) /∈
promise(F) and therefore (A,B′′) /∈ promise(F). �

6. Complexity Cores

We have seen that under the conditions of of cor.5.16. core(A,F) 6= Ø, pro-
vided there exists a B with (A,B) /∈ promise(F). We can improve the result
under the same assumption by connecting the elements of core(A,F) to the hard
cores (of complexity classes) introduced in a general form by Book-Du [2]. For F
and A define F(A) = {Q ∈ F | Q ⊆ A}.

Definition 6.1. (see [2]) B is a F-hardcore of A if and only if B /∈ fin(S) and
for all C ∈ F(A) : B ∩ C ∈ fin(S). If additionally B ⊆ A, then B is a proper
F-hardcore of A.

Lemma 6.2. If F is closed under finite variation with F = Fcc and A ∩B = Ø,
then

(1) (A,B) /∈ promise(F)⇔ Bc ∈ immune(F(Ac)co).
(2) B ∈ core(A,F)⇔ B is a proper F-hardcore of Ac.

Proof. We make use of the (trivial)
Assertion: A ⊆ Q and Q ∈ F ⇔ Q ∈ F(Ac)co.
(1) Suppose (A,B) /∈ promise(F) and Bc /∈ immune(F(Ac)co). Then Q ∈

F(Ac)co exists with Q /∈ fin(S) and Q ⊆ Bc. But then B ⊆ Qc, A ⊆ Q and
Q ∈ Fdc - a contradiction.

Conversely, if (A,B) ∈ promise(F), a Q ∈ Fdc exists with A ⊆ Q,B ⊆ Qc.
But then, Q ∈ F(Ac)co and Q ⊆ Bc. Since A /∈ fin(S), Q /∈ fin(S), i.e. Bc /∈
immune(F(Ac)co).

(2) Consider B ∈ core(A,F). Then by definition B /∈ fin(S) and B ⊆ Ac.
Now, suppose that B is not a proper F-hardcore of Ac. Then Q ∈ F(Ac) exists
with B ∩Q /∈ fin(S). Clearly, B ∩Q ⊆ Q ⊆ Ac. Moreover, A ⊆ Qc and Q ∈ F =
Fdc. Hence (A,B ∩Q) ∈ promise(F), a contradiction to B ∈ core(A,F).

Conversely, consider a proper F-hardcore B of Ac and suppose, that B /∈
core(A,F), i.e. (A,B′) ∈ promise(F) for some B′ ⊆ B with B′ /∈ fin(S). Then
Q ∈ Fdc exists with A ⊆ Q and B ⊆ Qc. Since B′ ⊆ B ∩ Qc /∈ fin(S) and
B ∩Qc ⊆ Ac, B is not a proper F-hardcore of Ac and we get a contradiction. �

In [2] R. V. Book and D. Z. Du characterize hard cores in the following way:

Theorem 6.3. ( [2]) Let F be a denumerable set family and A /∈ fin(S). Then a
proper F-hardcore B of A exists if and only if A /∈ Fu ⊕ fin(S).

Furthermore they achieved the existence of recursive hard cores under the fol-
lowing conditions:
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Theorem 6.4. ( [2]) If L is WP-recursive, closed under finite variation and
L = Lu, then for any A ∈ Lrec(X) \ L, a proper L-hardcore B ∈ Lrec(X) of A
exists.

Combining le.6.2. with th.6.4. we obtain

Theorem 6.5. If L is WP-recursive and L = Lb, then for any A ∈ Lrec(X) \ L :
core(A,F) ∩ Lrec(X) 6= ∅.

7. Concluding Remarks

It is natural, to consider n-dimensional promise problems (A1, . . . , An) with
Ai ∩ Aj = Ø and Ai ⊆ S for 1 ≤ i 6= j ≤ n. For a set family F the promise
problem is solvable if a partition (Q1, . . . , Qn) of S exists with Ai ⊆ Qi, Qi ∈
F(1 ≤ i ≤ n). For n > 2 cores of unsolvability can be characterized by cohesiveness
of A1∪ . . .∪An, too. But for n = 3 unsolvable promise problems exist, which have
no cores of unsolvability ( [1]).

Instead of Lreg(X) we can use a much smaller language family in the variation
condition “L ± Lreg(X) ⊆ L”. Let Lltr(X) = {w1L1 ∪ . . . ∪ wkLk|k > 0, wi ∈
X∗, Li ∈ fin(X∗)cc 1 ≤ i ≤ k} = ((fin(X∗)cc)ltr)u. A lengthy and involved, but
elementary proof shows, that Lltr(X) is a boolean algebra and ltr-cancellative.
Then we can use always the variation condition “L ± Lltr(X) ⊆ L”. Moreover, a
stronger result than le.3.2 and its corollary is possible, namely a complete charac-
terization of cohesive(Lltr(X)) by sequential functions.
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